STEYRMOTORS	Fuel selection Steyr Motors Marine		Version: 03	3
SIETRINOTURS	Engines			
Document STATUS:				
		Х	SERIES ENGINE	

Revision	Date	Revised by	Changes
Version 00	11.05.2015	Kern M.	Creation of document
Version 01	13.01.2016	Kern M.	Extension of chapter Overview Fuel Data – After Market Additives
Version 02	15.04.2022	Kern M.	Update of engine overview list in each chapter, Update of Fuel density compensation availability list, Extension of section Additives, integration of a quick selection in table of contents, Actualization of company name & Logo
Version 03	24.07.2023	Kern M.	Update C.A.R.E. Diesel naming to Neste MY renewable Diesel [™] , additional information added, update specification values

FUEL SELECTION STEYR-MOTORS MARINE ENGINES

Fuel selection Steyr Motors Marine Engines

Version: 03

Document STATUS:

X SERIES ENGINE

Introduction	2
Service interval	3
Fuel Density Compensation / Function	3
Fuel Density Compensation Availability	3
Measures for extended engine storage periods	4
Overview Fuel Data	4
Diesel Fuels	9
Diesel fuel according to EN590	11
Biofuel according to EN14214, FAME, RME	12
ASTM D975 1-D & 2-D (S15, S500, S5000)	14
SHELL GTL GASOIL according to DIN 15940	18
Neste MY renewable Diesel ™ (HVO) according to DIN 15940	19
Marine Distillates	20
DMA (MGO), DMX according to ISO 8217	22
NATO F-75 MIL-DTL-16884M, NATO STANAG-1385	23
NATO F-76 MIL-DTL-16884M, NATO STANAG-1385	24
Jet Fuels	25
Jet A	26
Jet A-1	26
JP-5 MIL-DTL-5624	29
JP-8 MIL-DTL-83133	31
F-44	33
F-54	33
F-63	33
F-65	33
Warranty:	33

STEYRMOTORS	Fuel	selection Steyr Motors Marine		V	ersion: 03
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

Introduction

This document will give you an overview of the fuels released to be used in Steyr-Motors for Marine applications as well as operational requirements.

STEYR MOTORS M1 MARINE ENGINES are developed to meet the specified power, emissions and fuel consumption only with Diesel fuel according to **EN590**.

For any other fuel, restrictions in operational performance and restrictions of emission must be considered and accepted.

To achieve the specified engine power output when using fuel with different density then in the Diesel EN590 specification, Steyr-Motors developed a Fuel Density Compensation Kit.

For best performance and trouble-free engine operation, Steyr-Motors recommends that an adequately sized fuel filter system with water separator and including a water in fuel sensor is installed.

Furthermore, it is a basic requirement that the installed fuel system on the vessel meet's the Steyr-Motors specification, please refer to the Installation Manual.

Under the "special requirements" (labeled in each fuel type description) you can find information about the influences and requirements regarding engine-operation.

Please NOTE:

- Every fuel used must comply with the corresponding, released specification and the special, minimum requirements from Steyr-Motors (labeled with *)
- It is the responsibility of the fuel supplier to ensure, that the fuel can be used at the expected given geographical and other local conditions such as minimum temperatures, so that correct engine operation is guaranteed!
- An engine operation with low fuel quality can cause damage or functional disorders!
- Fuels with higher contamination, viscosity or lower lubricity (>460µm HFRR wear scar) will definitely decrease the lifetime of the fuel supply pump!
- High sulfur content (≥ 0,5%) may cause corrosion and more frequent engine oil change intervals
- Engine operation with fuels with higher sulfur content require an engine oil with higher base number (BN) to counteract the corrosion which may occur (e.g. Shell Rimula R6M 10W40)
- The Fuel Density Compensation Kit only compensates for the engine power output regarding fuel density, it is <u>not</u> a "Safety Tool" where you can operate the Steyr-Motors engine with each fuel type!
 Biofuel usage: please consider that all components of the fuel system which are used on the vessel must be released for Biofuel usage. The 2aterial of the fuel tank, fuel pipes and other fuel components should not include copper, lead, or zinc. The material for O-ring seals or rubber gaskets should be FKM/FPM Viton*.

STEYRMOTORS (II)	Fuel	selection Steyr Motors Marine		Version: 03	,
SIETRIVIOTORS		Engines			
Document STATUS:					1
			Х	SERIES ENGINE	1

Service interval

Further information can be found on our homepage: http://www.steyr-motors.com/download/manuals-spare-parts/option-equipment

Please also refer to the disclosures in the "Overview Fuel Data"

This fuel selection document will be amended or supplemented when needed. Before usage, please make sure that you have the latest version of this document.

Fuel Density Compensation / Function

The fuel density sensor is a novel fluid property sensor that will directly and simultaneously measure the density and temperature of fluids. Kindly note that the sensor does not measure other fluid properties, sulphur, or contaminants!

The information about density and temperature is computed and engine injection quantity is corrected accordingly to achieve the specified rated power.

This device is an active sensor and is communicates with the ECU via the CAN Bus system.

For further information please contact Steyr-Motors.

Fuel Density Compensation Availability

NOTE: all content is subject to change due to further development.

Table 1

Engine type	Fuel Density Compensation available
SE144E38	X
SE164E40	X
SE126E25	✓
SE126E32	✓
SE156E26	✓
SE156E34	✓
SE186E38	✓
SE196E35	✓
SE236E40	✓
SE236S36	✓
SE266E40	✓
SE266S36	✓
SE286E40	✓
SE306J38	✓

STEYRMOTORS	Fuel selection Steyr Motors Marine	Version: 03
SIETRIVIOTURS	Engines	
Document STATUS:		
		X SERIES ENGINE

Measures for extended engine storage periods

Extended engine storage periods greater than 1 year lead to depletion of the fuel anti-oxidation and anti- corrosion additives especially with diesel/FAME blends. Fuel ageing leads to the formation of gum and residue in the fuel. Such aged fuel may lead to sticking of moving parts in the fuel system and as a consequence to fuel system malfunction. Therefore, during extended engine storage periods suitable measures have to be implemented: e.g. regularly check the diesel fuel ageing reserve and if necessary purge and replace with fresh fuel followed by flushing of the fuel system by a suitable engine run period.

Overview Fuel Data

Cetane:

- Cetane number is a more accurate measurement than Cetane index (Cetan number and index do correlate)
- Cetane number is an indication of how easily diesel ignites under high pressure and compression temperature conditions
- Cetane number which is too low leads to starting difficulties and white smoke
- EN590: Cetane number min. 51 (cetane index min. 46)
- SMO experience: Cetane number min. 46 (cetane index min. 38) is adequate for cold starts based on jet fuel testing

Density:

- Mass per volume
- The higher, the more mass, the more energy
- Deviations outside the EN 590 specification lead to either too much or too little power
- EN590: 820 845 kg/m³ at 15°C
- Ca. -1kg/m³/°C
- SMO experience: Diesel fuel up to 852kg/m³ at 15°C and jet fuel at 790kg/m³ at 15°C may be used
- A Fuel Density Compensation Kit is available

Aromatics:

- Main focus is on emissions and this is usually not an issue with engine performance or durability if the total aromatic content is under 10% m/m
- EN590: max. 8% (m/m = mass %)

STEYRMOTORS	Fuel	selection Steyr Motors Marine		Version: 0	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

Sulfur content:

- A too high sulfur content (≥ 0,5%) may cause corrosion and thus more frequent engine oil change intervals are recommended
- A high sulfur content causes numerous problems if exhaust gas recirculation and particulate filters are used
- Engine operation with fuel with higher sulfur content requires an engine oil with higher base number (BN)
- Very low sulfur content can cause issues with fuel lubricity (depends on the fuel manufacturers blending and use of additives in the fuel)
- EN590: max. 10mg/kg (=10ppm=Ultra low sulfur diesel [ULSD])

Flash Point:

- No directly relevant for engine operation
- Defines the fuel classification in one of the hazard classes
- Not to be confused with self-ignition temperature
- EN590: min. 55°C

Carbon residue:

- · Or coke residue
- Is a reference to the tendency of a specific fuel to form residues in the combustion chamber
 also known as coking of the injector nozzle
- EN590: max. 0,3% (m/m = mass %)

Ash content:

- Is a carbon-free combustion residue
- Can lead to wear of engine parts and the turbocharger
- EN590: max. 0,01% (m/m = mass %)

Water content:

- Causes corrosion of the fuel system, especially if salt water is present
- · Causes deposits, especially if salt water is present
- EN590: max. 200mg/kg (=200ppm)
- A water separator must be used in any case
- A water separator may become ineffective if the water content is above 2%

STEYRMOTORS (II)	Fuel	selection Steyr Motors Marine		Version: 03	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

Total contamination:

- Sediment, overall solid particle count
- Dust, rust, organic matter, fibres, etc.
- Causes wear in the injection- and fuel supply system and of the valves and seats
- EN590: max. 24mg/kg

Copper corrosion:

- Represents the chemical stability of the fuel as regards the sulphur compound and acid corrosion tendency
- Should typically not be an issue with high quality fuels
- May be an issue in case of too high water content
- May be an issue in the case of bio-fuels
- EN590: max. class 1 (3h at 50°C)

FAME content:

- Should not be of an issue as long as the diesel meets EN590: max. 7% (V/V=vol.%), FAME according to EN14214
- Higher content up to 100% leads to issues regarding fuel ageing and fuel storage.
- STEYR M1 engines are essentially able to run on any content but with the following conditions:
 - Fuel ageing is not under control of STEYR MOTORS any damages due to fuel ageing is not covered by warranty
 - All parts of the fuel and injection system (supplied by STEYR MOTORS) are capable of operating on biofuels meeting EN14214 (including any blends with EN590), but with reduced engine lifetime
 - A reduced engine oil change interval shall be considered as the oil is diluted by biofuel and there is a tendency for the oil to have a significant viscosity increase over time

Oxidation stability:

- Chemical stability against the formation of acids
- Especially a concern in case of biofuels and biofuel blends
- 20-30% biofuel blends are the worst case
- May decrease during storage (and therefore destroy the fuel)
- EN590: min. 20h
- EN14214: min. 6h

STEYRMOTORS (II)	Fuel	selection Steyr Motors Marine		Version: 03
SIETRIVIOTORS		Engines		
Document STATUS:				
			Х	SERIES ENGINE

Lubricity:

- Wear scar diameter (wsd 1,4) at 60°C, also known as HFRR
- Defines the wear depth when lubricating with the fuel tested
- EN590: max. 460μm
- SMO experience: successfully tested values up to 750µm have shown that lubricity is not an issue for the STEYR MOTORS <u>Unit Injector</u>

Viscosity:

- "fluidity" of the fuel
- Correlates partly with the density
- However, should stay within certain limits
- EN590: min. 2,0mm²/s, max. 4,5mm²/s (at 40°C)
- Viscosity lower than 2,0mm²/s can lead to hot start problems and may increase wear rate in the fuel pump

Distillation properties:

- Describes, how the fuel evaporates as temperature increases
- Higher temperatures / higher residues mean more residues after combustion
- EN590:
 - Max. 65% (V/V=vol.%) at 250°C
 - Min. 85% (V/V=vol.%) at 350°C
 - 95% (V/V=vol.%) at max 360°C

Cold filter plugging point (CFPP):

- At temperatures below the CFPP, fuel filters (and fuel pipes) may get blocked by the fuel, even if the fuel is still liquid
- Several classes defined in EN590
- Engines shall not be used with fuel temperatures below CFPP
- Other definitions for cold temperature behaviour of fuels may be:
 - Solidification point: the fuel does not flow under its own weight
 - Pour point: 3°C above the solidification point
 - Cloud point: solid precipitation (paraffin wax becomes visible)
- It is the responsibility of the fuel supplier to ensure that the fuel can be used at the expected given geographical and other local conditions minimum temperatures, so that a correct engine operation is guaranted!

STEYRMOTORS (II)	Fuel	selection Steyr Motors Marine		Version: 03
SIETRIVIOTORS		Engines		
Document STATUS:				
			Х	SERIES ENGINE

Additives:

- Most fuels contain additives for different reasons (lubricity, chemical stability, ignition improvers, etc.)
- Producers and suppliers of fuels must blend appropriate additives to ensure that specifications are met
- Good quality fuel supply therefore does not need additional additives
- After market additives are usually not effective, do not guarantee correct dosing and may interact with other additives
- After market additives must be avoided, unless if they are supplied or approved by STEYR MOTORS. Currently there are no additives approved respectively available from STEYR MOTORS.
- An engine operated with after market additives or additives which are not released from STEYR MOTORS can cause damage or functional disorders! If you use unsuitable additives, STEYR MOTORS are not liable for warranty claims!

C1	EYRMOTORS	Fuel	selection Steyr Motors Marine			Version: 03
3 1	ETRIVIDIORS		Engines			
Docur	nent STATUS:					
				Х	SERIES ENGINE	

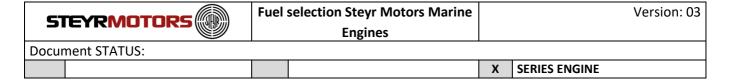
Diesel Fuels

Legend:

✓ Fuel density kit available

X Fuel density kit not available

✓ Fuel released


Fuel not released

Fuel released with special requirements (more information can be found in the description of each fuel type)

	Fuel			ASTIV	1 D975		
Engine Type	Density Kit	Diesel EN	Biodiesel	1-D	2-D	GTL	C.A.R.E.
	(FDK) available	590	EN14214	S15, S50	0, \$5000	DIN15940	DIN15940
			X	×	\boxtimes	☑	
SE144E38	x					without FDK reduced power output	without FDK reduced power output
		V	X	K	×	V	✓
SE164E40	x					without FDK reduced power output	without FDK reduced power output
SE126E25	√	✓	!	I	!	✓	✓
SE126E32	✓	✓	!	!	!	✓	✓
SE156E26	√	✓	!	!	!	V	✓
			!	<u>!</u>	!	V	
SE156E34	✓					without FDK reduced power output	without FDK reduced power output

STEYRMOTORS	Fuel selection Steyr Motors Marine		Version: 03
SIETRIVIOTORS	Engines		
Document STATUS:			
		Х	SERIES ENGINE

	Fuel						
Engine Type	Density Kit	Diesel EN	Biodiesel	1-D 2		GTL	C.A.R.E.
	(FDK) available	590	EN14214	S15, S50	0, S5000	DIN15940	DIN15940
SE186E38	✓	V	I	!	!	☑	✓
SE196E35	✓	<u> </u>	I .	!	!	V	✓
SE236E40	√	✓	ı	ļ.	ļ.	✓	✓
SE236S36	√	V	!	!	!	☑	✓
SE266E40	✓	☑	I I	!	!	V	V
SE266S36	✓	✓	!	<u>!</u>	!	V	<u> </u>
				_	_	_	
SE286E40	√	<u> </u>	!	!	!	<u> </u>	✓
SE306J38	√	<u>✓</u>	ı	<u>!</u>	<u>!</u>	✓	✓

Diesel fuel according to EN590

Climate-dependent behaviour (CFPP grades):

Summer grade (1 April to 30 September), maximum +5 °C (grade A) Winter grade (1 October to 28 February), maximum -20 °C (grade F)

(1 March to 31 March), maximum -15 °C (grade E).

Dropouts, Diocal EN COO	Unit	Lim	its	Test method	
Property Diesel EN 590	Unit	Minimum	Maximum	rest method	
Cetane number		51	-	EN ISO 5165 (b) EN 15195 EN 16144	
Cetane index		46	-	EN ISO 4264	
Density at 15 °C	kg/m³	820	845	EN ISO 3675 (c) EN ISO 12185	
Polycyclic aromatic hydrocarbons (d)	% (m/m)	-	8,0	EN 12916	
Sulfur content	mg/kg	-	10,0	EN ISO 20846 (e) EN ISO 20884 EN ISO 13032	
Manganese content (f)	mg/l				
until 2013–12–31 from 2014 to 01–01 onwards		-	6,0 2,0	prEN 16576	
Flash point	°C	Above 55,0	-	EN ISO 2719	
Carbon residue (g) (on 10 % distillation residue)	% (m/m)	-	0,30	EN ISO 10370	
Ash content	% (m/m)	-	0,01	EN ISO 6245	
Water content	mg/kg	-	200	EN ISO 12937	
Total contamination	mg/kg	-	24	EN 12662 (h)	
Copper strip corrosion (3 h at 50 °C)	rating	clas	s 1	EN ISO 2160	
Fatty acid methyl ester (FAME) content (i)	% (V/V)	-	7,0	EN 14078	
Oxidation stability	g/m³ h	- 20 (j)	25 -	EN ISO 12205 EN 15751	
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C	μm	-	460	EN ISO 12156-1	
Viscosity at 40 °C	mm²/s	2,0	4,5	EN ISO 3104	
Distillation (k, l)					
% (V/V) recovered at 250 °C	% (V/V)		< 65	EN ISO 3405 (m)	
% (V/V) recovered at 350 °C	% (V/V)	85		EN ISO 3924	
95 % (V/V) recovered at	°C		360		

STEYRMOTORS	Fuel selection Steyr Motors Marine			Version: 03	3
SIETRIVIOTURS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

Biofuel according to EN14214, FAME, RME

FAME: <u>Fatty Acid Methyl Esters</u> are esters of fatty acids. The physical characteristics of fatty acid esters are closer to those of fossil diesel fuels than pure vegetable oils, but properties depend on the type of vegetable oil. A mixture of different fatty acid methyl esters is commonly referred to as biodiesel, which is a renewable alternative fuel. FAME has physical properties like those of conventional diesel. It is also non-toxic and biodegradable.

RME: Rape Methyl Ester produced from raw rapeseed oil reacted with methanol

Special, requirements:

- Only released in combination with the Fuel Density Kit
- Not released for long term usage or storage
- After operation the whole fuel system must be flushed sufficiently with Diesel meeting EN 590
- Installation of a fuel pre filter with a water separator is necessary
- Oil change, oil filter and fuel filter service intervals are reduced to 50% of the normal recommendation
- A reduced lifetime of sealing gaskets, fuel hoses, fuel density sensor and fuel supply pump can be expected
- After 50 hours of operation with Biodiesel EN14214, all fuel filters must be replaced.
 (This is done to remove the sediment which Biodiesel dissolves from the fuel system)
- Please ensure that all components of the fuel system which are used on the vessel must be released for Biofuel usage.

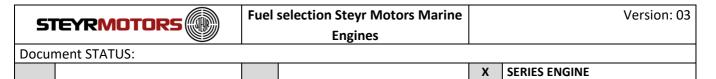
STEYRMOTORS	Fuel selection Steyr Motors Marine		Version: 03
SIETRIVIOTURS	Engines		
Document STATUS:			
		Х	SERIES ENGINE

Property Biofuel EN14214	Units	lower limit	upper limit	Test-Method
Ester content	% (m/m)	96.5	-	EN 14103
Density at 15°C	kg/m³	860	900	EN ISO 3675 / EN ISO 12185 / EN12185.
Viscosity at 40°C	mm²/s	3,5	5,0	EN ISO 3104 / EN 14105
Flash point	°C	> 101	-	EN ISO 2719 / EN ISO 3679.
Sulfur content	mg/kg	-	10	- EN ISO 20846 / EN ISO 20884.
Cetane number	-	51	-	EN ISO 5165
Sulfated ash content	% (m/m)	-	0,02	ISO 3987
Water content	mg/kg	-	500	EN ISO 12937
Total contamination	mg/kg	-	24	EN 12662
Copper band corrosion (3 hours at 50 °C)	rating	Class 1	Class 1	EN ISO 2160
Oxidation stability, 110°C	hours	8	-	EN 15751 / EN 14112
Acid value	mg KOH/g	-	0,5	EN 14104
Iodine value	-	-	120	EN 14111
Linolenic Acid Methylester	% (m/m)	-	12	EN 14103
Polyunsaturated (>= 4 Double bonds) Methylester	% (m/m)	-	1	EN 14103
Methanol content	% (m/m)	-	0,2	EN 14110
Monoglyceride content	% (m/m)	-	0,7	EN 14105
Diglyceride content	% (m/m)	-	0,2	EN 14105
Triglyceride content	% (m/m)	-	0,2	EN 14105
Free Glycerine	% (m/m)	-	0,02	EN 14105 / EN 14106
Total Glycerine	% (m/m)	-	0,25	EN 14105
Group I metals (Na+K)	mg/kg	-	5	EN 14108 / EN 14109 / EN 14538
Group II metals (Ca+Mg)	mg/kg	-	5	EN 14538
Phosphorus content	mg/kg	-	4	EN14107

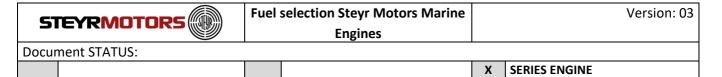
STEYRMOTORS		selection Steyr Motors Marine		Version: 03	,
		Engines			
Document STATUS:					1
			Х	SERIES ENGINE	1

ASTM D975 1-D & 2-D (S15, S500, S5000)

Special requirements:


- Only released in combination with the Fuel Density Kit
- \$5000: Engine oil with higher BN (>12mg KOH/g) needed! Oil change, oil filter and fuel filter service interval reduced to 50% of the normal recommendation (e.g. Shell Rimula R6M 10W40)
- Low Lubricity leads to higher wear of fuel system components and reduced lifetime of fuel system components
- Low Cetan number (min. 40) leads to worse cold start behaviour

ASTM Specifications for Diesel Fuel Oils (D975-97)


Diesel fuel is characterized in the United States by the ASTM standard D 975. This standard identifies five grades of diesel fuel described below.

Grade No. 1-D and Low Sulfur 1-D: A light distillate fuel for applications requiring a higher volatility fuel for rapidly fluctuating loads and speeds as in light trucks and buses. The specification for this grade of diesel fuel overlaps with kerosene and jet fuel and all three are commonly produced from the same base stock. One major use for No. 1-D diesel fuel is to blend with No. 2-D during winter to provide improved cold flow properties. Low sulfur fuel is required for on-highway use with the sulfur level < 0.05%.

Grade No. 2-D and Low Sulfur 2-D: A middle distillate fuel for applications that do not require a high volatility fuel. Typical applications are high-speed engines that operate for sustained periods at high load. Low sulfur fuel is required for on-highway use with the sulfur level < 0.05%.

Property D975	ASTM D	975-08a	ASTM D6751-12			
	_		2-B	2-B 1-B		
Flash point, min	No 1D 38°C	D93	93°C		D93	
riasii poiiti, iiiiii	No 2D 52°C	D93	33 C		D33	
Water & sediment, max	0.05% vol	D2709	0.050% vol		D2709	
Water, max						
Total contamination, max						
	90%:					
Distillation temperature (% vol	1D 288°C max	D86	90%: 360°C r	nax	D1160	
recovered)	2D 282- 338°C					
Vinamatia visaasitv	1D 1.3- 2.4 mm ² /s	DAAF	10602	/-	D44F	
Kinematic viscosity	2D 1.9- 4.1 mm ² /s	D445	1.9-6.0 mm ² /s		D445	
Density max.	876 Kg/m³					
Ester content	5% vol. max	EN 14078				
Ash, max	0.01% wt	D482				
Sulfated Ash, max			0.020% mass	;	D874	
	1D and 2D:		Two grades:			
Sulfur, max (by mass)	S15 15 mg/kg	D5453 D2622	S15 15 ppm	S15 15 ppm		
	S500 0.05%	D129 ²	S500 0.05%			
	S5000 0.50%					
Copper strip corrosion, max	No 3	D130	No 3		D130	
Cetane number, min	46*	D613	47		D613	

Property D975	ASTM I	D975-08a	ASTM D6751-12			
			2-B	1-B	Test	
- cetane index	40 min	D976-80		1		
- aromaticity	35% vol max	D1319				
PAH, max						
Operability, one of:		D2500				
- cloud point	Report	D4539				
- LTFT/CFPP	<u> </u>	D6371				
Cloud point			Report		D2500	
CFPP			r			
Carbon residue on 10% distillation residue, max	1D: 0.15% wt 2D: 0.35% wt	- D524	0.030*% wt	5	D4530	
Acid number, max			0.50 mg KOI	H/g	D664	
Oxidation stability			3 hrs min		EN 14112	
lodine value, max Linolenic acid methyl ester,						
max Polyunstatured methyl esters,						
max						
Alcohol control			0.2% wt me		EN14110	
			130°C flash	point min	D93	
Monoglycerides, diglycerides &				MG		
triglycerides, max				0.40% wt	D6584	
Group I metals (Na + K), max			5 mg/kg		EN 14538	
Group II metals (Ca + Mg), max			5 mg/kg		EN 14538	
Free glycerin, max			0.020% wt		D6584	
Total glycerin, max			0.240% wt		D6584	

STEYRMOTORS	Fuel selection Steyr Motors Marine				Version: 03
SIETRIVIOTURS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

Phosphorous, max			0.001% wt	D4951
Lubricity, max	520 μm	D6079		

^{*}special requirement from Steyr-Motors

STEYRMOTORS	Fuel	selection Steyr Motors Marine		Version: 0	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

SHELL GTL GASOIL according to DIN 15940

Special requirements:

• Without the Fuel Density Kit a restricted engine performance has to be accepted

Product description:

Shell (Gas to Liquids) GTL Gasoil is a new innovative fuel designed to lower local emissions. Shell GTL Gasoil is virtually free of aromatics, poly-cyclic aromatics, olefins, sulphur, nitrogen and metals. The fuel is colourless and almost odourless. GTL Gasoil predominantly contains straight chain normal paraffins and branched iso-paraffins. Due to its composition the fuel has a very high cetane number and will burn cleaner, (lower NOX, particulate matter and SOX emissions) compared to conventional diesel.

Specification:

Shell GTL Gasoil meets the following specification:

CEN TS 15940 "Automotive fuels – Paraffinic diesel from synthesis or hydrotreatment – Requirements and test methods"

Product data:

Fuel properties of GTL Gasoil will show variations due to the production process. Indicative values are shown below:

Caracteristic GTL DIN 15940	Unit	Test method reference	Minimum	Maximum				
Cetan number	-	ISO 5165	70	-				
Density at 15°C	kg/m³	ISO 3675	770	800				
Sulfur content	mg/kg	ISO 14596	-	3.0				
Total aromatic content	% (m(m)	EN 12916	-	0.5				
Polycyclic Aromatics content	% (m(m)	EN 12916	-	0.1				
Total Olefin content	% (m(m)	ASTM D1159	-	0.1				
Visocity at 40°C	mm²/s	ISO 3104	2	4,5				
Flashpiont	°C	EN 2719	60	-				
Destillation		ISO 3405						
% (v/v) recovered at 250°C	% (v/v)		-	65				
% (v/v) recovered at 350°C	% (v/v)		85	-				
95% (v/v) recovered at	°C			360				
Cold filter plugging point	°C	EN 116	-	-9(-20)**				
** values between brackets are valid for the Winter period								

STEYRMOTORS	Fuel selection Steyr Motors Marine	,	Version: 03
SIETRIVIOTURS	Engines		
Document STATUS:			
		X SERIES ENGINE	

Neste MY renewable Diesel [™] (HVO) according to DIN 15940 (former C.A.R.E. Diesel)

Special requirements:

Without the Fuel Density Kit a restricted engine performance has to be accepted

Neste MY Renewable Diesel™ is a high-quality synthetic diesel fuel produced entirely from renewable raw materials. Neste MY can also be referred to as HVO100 or HVO diesel fuel and meets the requirements of DIN EN 15940 for paraffinic diesel fuels.

Neste MY Renewable Diesel™ significantly exceeds the quality requirements (EN 590) for diesel fuels (with the exception of the minimum density) and is clearly superior in performance to both conventional biodiesel and fossil diesel. It has, by virtue of the very high cetane number and purest composition, a performance enhanced quality without requiring additional additives. In addition, Neste MY Renewable Diesel™ has a very slow ageing and high storage stability factor, this diesel fuel has favourable cold flow properties at very low temperatures.

Characteristic		Unit	Limit	Neste MY renewable Diesel TM	Test method reference
Kinematic viscosity at 40 °C (a)		mm²/s	max.	2,0	EN ISO 3104
Killelliatic viscosity at 40°C (a)		111111 /3	min.	4,0	LIN 130 3104
Density at 15 °C		kg/m³	min.	770	EN ISO 12185
Delisity at 15°C		Kg/III	max.	790	EN 130 12163
Cetane number		_	min.	70	EN 15195
Sulfur (b)		mg/kg	max.	5	EN ISO 20846
Flash point		°C	min.	61	EN ISO 2719
Copper strip corrosion		class		1	EN ISO 2160
Acid number		mg KOH/g	max.	0,01	ASTM D3242
Total contamination		mg/kg	max.	24	EN ISO 12662
Oxidation stability		h	min.	25	EN ISO 12205
Carbon residue: micro method on the 10 % volume distillation residue		% (wt.)	max.	0,3	EN ISO 10370
Distillation % (V/V) recovered at 250°C % (V/V) recovered at 350° (V/V) recovered at		% (V/V) % (V/V) °C	min.	<65 85 360	EN ISO 3405
Cloud point	_	°C	max.	-22	EN 23015
CFPP	winter quality	°C	max.	reported	EN 116

STEYRMOTORS (III)	Fuel	selection Steyr Motors Marine		Version: 03	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

	summer quality	°C	max.	reported	
FAME		vol%	_	0,0	
Water		mg/kg	max.	200	EN ISO 12937
Ash		% (wt.)	max.	0,01	EN ISO 6245
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C (h)		μm	max.	400	EN ISO 12156-1

^{*}special requirement from Steyr-Motors

Marine Distillates

Legend:

- ✓ Fuel density kit available
- X Fuel density kit not available
- ✓ Fuel released
- Fuel not released

Fuel released with special requirements (more information can be found in the description of each fuel type)

Engine Type	Fuel Density Kit (FDK) available	DMA (MGO) ISO8217	DMX ISO8217	NATO F-75	NATO F-76
SE144E38	x	X	X	×	×
<u> </u>	1				
SE164E40	x	X	×	×	X
			<u> </u>		
SE126E25	✓	<u>!</u>	!	<u>!</u>	<u>!</u>
	<u>, </u>			_	
SE126E32	✓	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE156E26	√	<u>!</u>	<u>!</u>	<u>!</u>	ļ.
SE156E34	√	ļ.	ļ.	<u>!</u>	<u>!</u>
SE186E38	✓	!	!	!	!
SE196E35	✓	!	<u>!</u>	<u>!</u>	<u>!</u>

STEYRMOTORS (II)	Fuel	selection Steyr Motors Marine		\	Version: 03
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

SE236E40	✓	!	<u>!</u>	<u>!</u>	!
SE236S36	✓	<u>!</u>	<u>!</u>	<u>!</u>	!
SE266E40	✓	<u>!</u>	<u>!</u>	<u>!</u>	!
-					
SE266S36	✓		<u>!</u>	<u>!</u>	<u>!</u>

Engine Type	Fuel Density Kit (FDK) available	DMA (MGO) ISO8217	DMX ISO8217	NATO F-75	NATO F-76
SE286E40	✓	<u>!</u>	<u>!</u>	!	!
	•				
SE306J38	✓	<u>!</u>	<u>!</u>	!	<u>!</u>

STEYRMOTORS	Fuel selection Steyr Motors Marine	Version: 03
SIETRIVIOTORS	Engines	
Document STATUS:		
		X SERIES ENGINE

DMA (MGO), DMX according to ISO 8217

Special requirements:

- Only released in combination with the Fuel Density Kit
 Engine oil with higher BN (>12mg KOH/g) needed! (e.g. Shell Rimula R6M 10W40) Oil change,
 oil filter and fuel filter service interval reduced to 50% of the normal recommendation
- Installation of a fuel pre filter with a water separator is necessary
- Higher sulfur content may cause corrosion in the combustion chamber, cylinder liners, injection nozzles, valves, exhaust, turbo charger, exhaust elbow assembly
- Low Lubricity leads to higher wear of fuel system components and reduced lifetime of fuel system components e.g. fuel supply pump

Characteristic DMX, DMA		Unit	Limit	DMA (acc.to ISO8217)	DMX (acc.to ISO8217)	Test method reference
Kinematic viscosity at 40 °C (a)		mm²/s	max.	4,5*	4,5*	ISO 3104
Talle viscosity at 40°C (a)		111111 / 3	min.	2,0	2,0*	
Density at 15 °C		kg/m³	max.	890	890*	ISO 3675 or ISO 12185
Cetane index		-	min.	40	45	ISO 4264
Cetane number		-	min.	46*	46*	
Sulfur (b)		mass %	max.	1,0*	1,0	ISO 8754, ISO 14596
Flash point		°C	min.	60	43	ISO 2719
Hydrogen sulfide		mg/kg	max.	2,0	2,0	IP 570
Acid number		mg KOH/g	max.	0,5	0,5	ASTM D664
Total sediment by hot filtration		mass %	max.	_	_	ISO 10307-1
Oxidation stability		g/m³	max.	25	25	ISO 12205
Carbon residue: micro method on the 10 % volume distillation residue		mass %	max.	0,3	0,3	ISO 10370
Cloud point		°C	max.	_	-16	ISO 3015
Pour point (upper) (c)	winter quality	°C	max.	-6	_	ISO 3016
Pour point (upper) (c)	summer quality	°C	max.	0	_	ISO 3016
Appearance		_	_	Clear and bright (h)		
Water		vol%	max.	0,5*	0,5*	ISO 3733
Ash		mass %	max.	0,01	0,01	ISO 6245
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C (h)		μm	max.	520	520	ISO 12156-1

^{*}special requirement from Steyr-Motors

STEYRMOTORS	Fuel selection Steyr Motors Marine			Version: 0	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

NATO F-75 MIL-DTL-16884M, NATO STANAG-1385

• Only released in combination with the Fuel Density Kit

Characteristic F-75	Unit	Limit	NATO F-75	Test method reference
Kinematic viscosity at 40 °C	mm²/s	min. max.	1,8 4,3	DIN 51562 Part 1
Density at 15 °C	kg/m³	max.	860	DIN 51757
Cetane number	_	min.	46*	DIN 51773
Sulfur	mass %	max.	0,05	DIN 51400 Part 1 and 6
Flash point	°C	min.	61	DIN EN 22719
Hydrogen sulfide	mg/kg	max.		
Acid number	mg KOH/g	max.	0,3	D974, D664
Corrosion, at 100 °C (max)	Class		No 1	D130
Particulate Contamination	mg/liter	max.	10	D6217, D5452
Carbon Residue on 10% bottoms	wt %	max.	0,3*	D524, D189, D4530
Total contamination	mg/kg	max.	24*	
Cloud point	°C	max.	-13	DIN EN 230515
Pour point (upper)	°C	max.	-18	DIN ISO 3016
Appearance	-	-		Clear, bright, and free of visible particulates D4176
Water content	mg/kg	max.	200*	
Ash	mass %	max.	0,01	DIN EN ISO 6245
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C	μm	max.	460	D6079, D7688

^{*}special requirement from Steyr-Motors

STEYRMOTORS	Fuel selection Steyr Motors Marine			Version: 0	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

NATO F-76 MIL-DTL-16884M, NATO STANAG-1385

• Only released in combination with the Fuel Density Kit

Characteristic F-76	Unit	Limit	NATO F-76	Test method reference
Kinematic viscosity at 40 °C	mm²/s	min. max.	1,7 4,3	IP 71
Density at 15 °C	kg/m³	max.	880	IP 160
Cetane number	_	min.	46*	ASTM D 613
Sulfur	mass %	max.	0,05	IP 336
Flash point	°C	min.	61	IP 34
Hydrogen sulfide	mg/kg	max.		
Acid number	mg KOH/g	max.	0,3	D974, D664
Corrosion, at 100 °C (max)	Class		No 1	D130
Particulate Contamination	mg/liter	max.	10	D6217, D5452
Carbon Residue on 10% bottoms	wt %	max.	0,3*	D524, D189, D4530
Total contamination	mg/kg	max.	24*	
Cloud point	°C	max.	-13	IP 219
Pour point (upper)	°C	max.	-18	IP 15
Appearance	_	-		Clear, bright, and free of visible particulates D4176
Water content	mg/kg	max.	200*	D7171, D4808, D5291
Ash	mass %	max.	0,01	IP 4
Lubricity, corrected wear scar diameter (wsd 1,4) at 60 °C	μm	max.	460	D6079, D7688

^{*}special requirement from Steyr-Motors

STEYRMOTORS		Fuel	selection Steyr Motors Marine		Version: 03
ħ	ETRIVIDIORS		Engines		
Docur	nent STATUS:				
				Х	SERIES ENGINE

Jet Fuels

Special requirements:

- Released in combination with the Fuel Density Kit
- Without the Fuel Density Kit a restricted engine performance has to be accepted
- Low Lubricity can lead to higher wear of fuel system components and the reduced lifetime of fuel system components e.g. fuel supply pump
- High viscosity can lead to higer stresses on the fuel system components and reduced the lifetime of fuel system components e.g. fuel supply pump

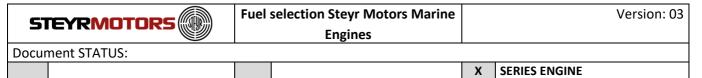
Legend:

- √ Fuel density kit available
- X Fuel density kit not available
- ✓ Fuel released
- Fuel not released
- Fuel released with special requirements (more information can be found in the description of each fuel type)

Engine Type	Fuel Density Kit (FDK) available	Jet A	Jet A-1	MIL JP-	MIL JP-	NATO F-34	NATO F-35	NATO F-44	NATO F-63	NATO F-65
SE144E38	x	!	<u>!</u>	!	!	!	<u>!</u>	!	!	<u>!</u>
SE164E40	х	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
			1	1	1		1		1	Į.
SE126E25	✓	!	!	!	!	!	!	!	!	<u>!</u>
SE126E32	✓	<u>!</u>	!	!	!	!	!	!	!	<u>!</u>
SE156E26	√	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	!	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE156E34	✓	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	!	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE186E38	√	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE196E35	√	!	!	į.	į.	ļ.	ļ.	!	į.	<u>!</u>

Engine Type	Fuel Density Kit (FDK) available	Jet A	Jet A-1	MIL JP-	MIL JP-	NATO F-34	NATO F-35	NATO F-44	NATO F-63	NATO F-65
SE236E40	✓	<u>!</u>	!	!	<u>!</u>	!	!	!	!	<u>!</u>
SE236S36	✓	<u>!</u>	<u>!</u>	!	<u>!</u>	<u>!</u>	!	!	!	<u>!</u>
SE266E40	✓	!	<u>!</u>	!	!	<u>!</u>	!	<u>!</u>	<u>!</u>	<u>!</u>
SE266S36	✓	!	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE286E40	✓	<u>!</u>	!	!	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>	<u>!</u>
SE306J38	✓	<u>!</u>	!	!	<u>!</u>	<u>!</u>	!	<u>!</u>	<u>!</u>	<u>!</u>

Jet A


Industry standard is used only by U.S. commercial airlines when operating within the U.S.

- ASTM D1655
- Freeze Point: \leq -40°C (- 40°F)
- Density @15°C: 0.775 to 0.840 kg/L
- Flash Point: ≥ 38°C (100°F)

Jet A-1

Industry "standard" used worldwide by all commercial airlines. Has slightly lower freeze point requirement than Jet A (-47° vs. -40°C), interchanged under NATO code **number F-35**.

- ASTM specification D1655, DEF STAN 91-91
- Freeze Point: ≤ -47 $^{\circ}$ C (- 53 $^{\circ}$ F)
- Density @15°C: 0.775 to 0.840 kg/L
- Flash Point: ≥ 38°C (100°F)

		Jet A /A1-1 Kerosine	
COMPOSITION Jet A/A1		(1)	Test Method ASTM
Appearance		C & B (2)	
Acidity, Total (mg KOH/g)	Max.	0.10	D3242
Aromatics (vol %)	Max.	25	D1319
Sulphur, Total (wt %)	Max.	0.30	D1266, D2622, D4294, D5453
Sulphur, Mercaptan (wt %)	Max.	0.003	D3227
or Doctor Test		Negative	D4952
VOLATILITY			
Distillation Temperature:			D86, D2887 (3)
10% Recovery (°C)	Max.	205 (185)	
50% Recovery (°C)	Max.	Report	
90% Recovery (°C)	Max.	Report	
Final BP (°C)	Max.	300 (340)	
Distillation Residue (vol %)	Max.	1.5	
Distillation Loss (vol %)	Max.	1.5	
Flash Point (°C)	Min.	38	D56, D3828 (4)
Density @ 15°C (kg/m³)		775-840	D1298, D4052
FLUIDITY			
Freezing Point (°C)	Max.	-40 Jet A	D2386, D4305 (6)
Freezing Point (°C)	Max.	-47 Jet A-1	D5901, D5972 (7)
Viscosity @ -20°C (cst)	Max.	8.0	D445
COMBUSTION			
Net Heat of Comb. (MJ/kg)	Min.	42.8	D3338, D4529, D4809
Smoke Point (mm)	Min.	25	D1322
or Smoke Point (mm)	Min.	18	D1322
and Naphthalenes (vol %)	Max.	3.0	D1840
CORROSION			
Copper Strip (2h @ 100°C)	Max.	1	D130
THERMAL STABILITY			
JFTOT ΔP @260°C (mm Hg)	Max.	25 (8)	D3241
Tube Deposit Rating (Visual)	Max.	<3 (9)	
CONTAMINANTS			
Existent Gum (mg/100mL)	Max.	7	D381
Water Reaction Interface	Max.	1b	D1094
MSEP Rating	Min.	85 (10)	
OTHER			
Conductivity (pS/m)		50-450 (11)	D2624
ADDITIVES			
Anti-icing (vol %)		Agreement (12)	
Antioxidant		Option	
Corrosion Inhibitor		Agreement	

STEYRMOTORS (II)		selection Steyr Motors Marine		Version: 03
SIETRIVIOTORS	Engines			
Document STATUS:				
			Х	SERIES ENGINE

NOTES Jet A/A1

- (1) Jet A-1 is similar to Jet A in all proberties except Freezing Point at -47°C max.
- (2) Fuel shall be visually free of undissolved water, sediment and suspended matter.
- (3) Simulated distillation by ASTM D2887 allowed for Jet A/A-1; test limit in parentheses.
- (4) Results obtained by method D3828 may be up to 2°C lower than those optained by method D56.
- (6) With method D4305, use procedure A only. This method shall not be used on samples with viscosities greater than 5.0 cSt at -20°C.
- (7) D5972 may produce a higher (warmer) result than D2386 on wide-cut fuels.
- (8) Test at control temperature of 260°C, but if requirements are not met, the test may be conducted at 245°C. in this case report results at both temperatures.
- (9) No abnormal or peacock colour deposits allowed.
- (10) For fuel without static dissipating additive. For fuel containing static dissipator additive, a minimum MSEP rating of 70 applies. Limits apply only at point of manufacture.
- (11) When electrical conductivity additive is specified by the purchaser, conductivity shall be 50-450 pS/m under the conditions at point of delivery.
- (12) DiEGME additive conforming to requirements of D4171, Type III, may be used at 0.10-0.15 vol % concentration.
- (13) Stadis 450 additive limited to 3 mg/L max. at manufacture, and cumulative total 5 mg/L max on retreatment.

STEYRMOTORS	Fuel	selection Steyr Motors Marine		Version: 03	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

JP-5 MIL-DTL-5624's Grade JP-5 interchanged under NATO code **number F-44**; contains only kerosene fractions; not considered volatile.

MIL-DTL-5624, DEF STAN 91-86
 Freeze Point: ≤ -46°C (-50.8°F)
 Density @15°C: 0.788 to 0.845 kg/L

- Flash Point: \geq 60°C (140°F)

Duamantus ID F	CDADE ID E	ASTM or IP Test		
Property JP-5	GRADE JP-5	Method		
Color, Saybolt	Report	D156 or D6045		
Total acid number, mg KOH/g, max	0.015	D3242		
Aromatics, vol percent, max	25.0	D1319		
Sulfur, Mercaptan, mass percent, max	0.002	D3227		
or				
Doctor test	Negative	D4952		
Sulfur, total, mass percent, max	0.20	D129, D1266,D2622, D3120,D4294 or D5453		
Distillation temperature, ° C				
Initial boiling point	Report			
10 percent recovered, temp	205, max			
20 percent recovered, temp	Report			
50 percent recovered, temp	Report	D86 or D2887		
90 percent recovered, temp	Report			
End point, max temp	300, max			
Residue, vol %, max (for D86)	1,5			
Loss, vol %, max (for D86)	1,5			
Flash point, ° C, min	60.0	D56, D93, or D3828		
Density, at 15° C				
kg/L, min (API max)	0.788	D1298, D4052 or D7777		
kg/L, max (API min)	0.845			
Freezing point, ° C, max	-46	D2386, D5972 D7153, or D7154		
Viscosity, at -20° C, max, mm2/s	8,5	D445		
Net Heat of combustion, MJ/kg, min	42.6	D3338, D4529, or D4809		

STEYRMOTORS	Fuel selection Steyr Motors Marine	Version: 03
SIETRIVIOTORS	Engines	
Document STATUS:		
		X SERIES ENGINE

Duomoutiv ID F	CDADE ID E	ASTM or IP Test	
Property JP-5	GRADE JP-5	Method	
Hydrogen content, mass percent, min	13,4	D3701 or D7171	
Copper strip corrosion, 2 hr at	No. 1	D120	
100° C, max	No. 1	D130	
Fuel system icing inhibitor			
volume percent min	0.10	D5006	
volume percent max	0.15		
Lubricity, µm, max	760*	D5001	

^{*}special requirement from Steyr-Motors

STEYRMOTORS	Fuel selection Steyr Motors Marine	Version: 03
SIETRIVIOTORS	Engines	
Document STATUS:		
		X SERIES ENGINE

JP-8 MIL-DTL-83133 interchanged under NATO code **number F-34**; contains only kerosene fractions; not considered volatile. Identical to ASTM D 1655 Jet A-1, except Jet A-1 does not include fuel system icing inhibitor, corrosion inhibitor, or static dissipator additive, which are all mandatory under MIL-DTL-83133.

MIL-DTL-83133, DEF STAN 91-87
Freeze Point: ≤ -47°C (-52.6°F)
Density @15°C: 0.775 to 0.840 kg/L
Flash Point: ≥ 38°C (100.4°F)

COMPOSITION JP-8		JP-8 Kerosine	Test Method ASTM
Appearance		C & B (2)	
Acidity, Total (mg KOH/g)	Max.	0.015	D3242
Aromatics (vol %)	Max.	25	D1319
Sulphur, Total (wt %)	Max.	0.30	D4294 (3)
Sulphur, Mercaptan (wt %)	Max.	0.002	D3227
or Doctor Test		Negative	D4952
Colour, Saybolt		Report	D156, D6045
VOLATILITY			
Distillation Temperature:			D86, D2887
Initial BP (°C)	Min.	Report	
10% Recovery (°C)	Max.	205 (186) max.	
20% Recovery (°C)	Min.	Report	
50% Recovery (°C)		Report	
90% Recovery (°C)	Max.	Report	
Final BP (°C)	Max.	300 (330)	
Distillation Residue (vol %)	Max.	1.5	
Distillation Loss (vol %)	Max.	1.5	
Flash Point (°C)	Min.	38	D56, D3828
Density @ 15°C (kg/L)		0.775-0.840	D1298, D93, D4052
or Gravity, API @ 60°F		51.0-37.0	D1298
FLUIDITY			
Freezing Point (°C)	Max.	-47	D2386, D5901, D5972, D445
Viscosity @ -20°C (cst)	Max.	8.0	D445
COMBUSTION			
Net Heat of Comb. (MJ/kg)	Min.	42.8	D3338, D4809
Cetane Index (calculated)		Report	D976
Smoke Point (mm)	Min.	25	D1322
or Smoke Point (mm)	Min.	19	D1322
and Naphthalenes (vol %)	Max.	3.0	D1840
Hydrogen Content (wt %)	Min.	13.4	D3701, D3343 (6)
CORROSION			
Copper Strip (2h @ 100°C)	Max.	1	D130

STEYRMOTORS (II)		Fuel selection Steyr Motors Marine		Version: 03	3
SIETRIVIOTORS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

COMPOSITION JP-8		JP-8 Kerosine	Test Method ASTM
THERMAL STABILITY			
JFTOT ΔP @260°C (mm Hg)	Max.	25	D3241 (7)
Tube Deposit Rating (Visual)	Max.	<3 Visual (8)	
CONTAMINANTS			
Existent Gum (mg/100mL)	Max.	7	D381
Particulates (mg/L)	Max.	1.0	D2276, D5452
Filtration Time (min)	Max.	15	-11
Water Reaction Interface	Max.	1b	D1094
MSEP Rating	Min.	90 (12)	D3948
OTHER			
Conductivity (ps/m)		(13)	D2624
ADDITIVES			
Anti-icing (vol %)		0.10-0.15 (14)	D5006
Antioxidant (ppm)		Required (15)	
Corrosion Inhibitor (ppm)		Required (16)	
Metal Deactivator		Agreement	
Static Dissipator		Required	

NOTES

- (2) Fuel shall be clear and bright at 21°C; JP-8 may contain no more than 1.0 mg/L of particulate matter
- (3) D1266, D2622 and D3120 are permitted alternatives for JP-8 (which also accepts D129 and D5453).
- (6) May use calculation (D3343) or measurement method (D3701).
- (7) Test conditions for JP-8 fuel at 260°C for 2.5h.
- (8) No peacock or abnormal colours allowed.
- (11) Filtration time determined according to procedure in Appendix A of MIL-DTL-83133E.
- (12) Limit for fuel containing antioxidant and metal deactivator. Limit reduced to 85 when third additive is
- icing inhibitor; to 80 when third additive is corrosion inhibitor; to 70 with all four additivers present.
- (13) Conductivity limits are 150-450 pS/m for F-34 (JP-8), 50-450 pS/m for F-35, and 150-700 pS/m for JP-8+100 fuel. Conductivity must be within range at ambient fuel temperature or 29,4°C, whichever is lower.
- (14) Fuel system icing inhibitor is mandatory for F-34 grade, by agreement in F-35.
- (15) Required for fuel containing hydrogen-treated blending stocks. Optional for fuel not containing hydrogen-treated blending stocks.
- (16) PWA-536 lubricity additive shall be added to JP-7 fuel. Corrosion inhibitor conforming to MIL-PREF-25017 shall be added to F-34 fuel, but is optional for F-35.

STEYRMOTORS		Fuel selection Steyr Motors Marine		Version: 0	3
SIETRINOTURS		Engines			
Document STATUS:					
			Х	SERIES ENGINE	

F-44 is a kerosine grade of aviation fuel suitable for most turbine-engined aircraft. This military fuel grade is intended specifically for use on naval aircraft carriers, where a fuel with a higher flash point than standard Jet A-1/JP-8 is required for on-board safety reasons.

F-54 (Diesel fuel) middle distillate fuel used for automotive diesel and gas turbine engines.

- ASTM D975
- Density @15°C: ~ 0.820 to 0.840 kg/L
- Flash Point: \geq 52°C (125.6°F)

F-63 same as F-35 (Jet A-1) incl. wear and ignition improver additive.

F-65 mixture from F-54, F-34 and F-35

Warranty:

Compliance with the fuel specification document is an integral part of the warranty conditions.

The fuel supplies are responsible for the worldwide consistent quality of the above products.

STEYR-MOTORS accept no liability for improper or non-specified use of the released fuels.

In case of warranty, the claimed fuel components must be forwarded inclusive of a fuel sample from the fuel tank (at least 1 litre) and the fuel filter(s).

For the examination of any warranty claim, we need the following as a minimum requirement:

- Customer name, telephone number, E-mail details and postal address
- Engine type
- Engine number
- Running time of the claimed components
- Fuel samples (at least 1 litre of each) and fuel filter(s)
- Description of the warranty claim

All rights reserved. Duplication or translation - including excerpts - is not permitted without written approval from STEYR MOTORS BETRIEBS GmbH. We reserve the right to make amendments without prior notice.